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Abstract A subgrid-scale eddy parameterization is developed, which makes use of an explicit eddy
kinetic energy budget and can be applied at both “non-eddying” and “eddy-permitting” resolutions. The
subgrid-scale eddies exchange energy with the resolved flow in both directions via a parameterization of
baroclinic instability (based on the established formulation of Gent and McWilliams) and biharmonic and
negative Laplacian viscosity terms. This formulation represents the turbulent cascades of energy and
enstrophy consistent with our current understanding of the turbulent eddy energy cycle. At the same time,
the approach is simple and general enough to be readily implemented in ocean climate models, without
adding significant computational cost. The closure has been implemented in the Modular Ocean Model
Version 6 and tested in the “Neverworld” configuration, which employs an idealized analytically defined
topography designed as a testbed for mesoscale eddy parameterizations. The parameterization performs
well over a range of resolutions, seamlessly connecting non-eddying and eddy-resolving regimes.

1. Introduction
Most of the kinetic energy (KE) in the ocean is in the form of mesoscale (O(10–100) km) eddies (e.g.,
Ferrari & Wunsch, 2009), which play a crucial role in the transport of heat, salt, and biogeochemical tracers,
both directly via stirring and mixing and indirectly via their effect on the large-scale ocean circulation (e.g.,
Busecke et al., 2014; Gill et al., 1974; Gnanadesikan et al., 2015; Hallberg & Gnanadesikan, 2006; Johnson &
Bryden, 1989; McWilliams, 2008; Waterman et al., 2011). Since mesoscale ocean eddies are relatively small,
it is inherently challenging to represent their effects in global ocean and climate models. Many global ocean
and climate models today have insufficient resolution to resolve any significant mesoscale eddy activity and
their effect needs to be entirely parameterized (e.g., Meijers, 2014). An increasing number of global models
meanwhile are entering the so-called “eddy-permitting” resolution regime (grid spacing ≲ (1/4)◦), where
the largest mesoscale features can be resolved explicitly (e.g., Griffies et al., 2015; Kuhlbrodt et al., 2015;
Menemenlis et al., 2008). However, due to the wide range of scales and scale interactions in ocean turbu-
lence, eddy-permitting models still rely heavily on adequate parameterizations of subgrid-scale eddy effects
(e.g., Fox-Kemper & Menemenlis, 2008; Jansen et al., 2015; Roberts & Marshall, 1998).

To identify the processes that need to be represented by a subgrid eddy parameterization at different reso-
lutions, we can build on our understanding of the energetics of mesoscale eddies. According to the theory
of quasi-geostrophic (QG) turbulence (Jansen & Held, 2014; Larichev & Held, 1995; Rhines, 1979; Salmon,
1980; Vallis, 2006), the largest eddies extract available potential energy (APE) from the mean flow by per-
turbing the large-scale mean density gradient, thus converting mean into eddy APE. Eddy APE is then
transferred to smaller scales before being converted into eddy kinetic energy (EKE) near the scale of the
deformation radius. Finally, EKE is transferred to larger scales until the inverse cascade is halted by fric-
tion or a turbulence-wave transition. At scales smaller than the deformation radius, enstrophy (i.e., vorticity
variance), but no energy, is cascaded toward small scales. Energy fluxes in the real ocean are likely to be sig-
nificantly more complex than this idealized picture, primarily due to interactions with topography and the
potential for loss of balance, which can trigger a forward energy cascade. Moreover, the idealized picture
sketched above assumes a large scale separation between the mean flow and the eddies and again between
the largest eddies and the deformation radius. Clear scale separations are, however, not usually found in
Earth's ocean. Nevertheless, we expect the idealized QG theory to provide a useful guide as to what pro-
cesses are likely to be important at different scales (e.g., Arbic et al., 2013; Ferrari & Wunsch, 2009; Scott &
Wang, 2005; von Storch et al., 2012).
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In cognizance of the increasing resolution of global models, there has recently been a push toward the devel-
opment of improved parameterizations for ocean models in the so-called eddy-permitting resolution regime,
where the largest eddies are at least marginally resolved (Bachman et al., 2017; Griffies & Hallberg, 2000;
Fox-Kemper & Menemenlis, 2008; Hallberg, 2013; Jansen & Held, 2014; Jansen et al., 2015; Mana & Zanna,
2014; Zanna et al., 2017). Jansen and Held (2014) and Jansen et al. (2015) developed a new parameterization
for subgrid-scale eddy momentum fluxes in eddy-permitting models based on our physical understanding
of energy and enstrophy cascades in geostrophic turbulence. Noting the need to remove enstrophy at the
grid scale without spuriously dissipating KE, a biharmonic viscosity operator was combined with a negative
Laplacian viscosity to represent the backscatter of KE to the resolved flow. The magnitude of the backscatter
is regulated via an explicit subgrid KE budget, which closes the energy budget and stabilizes the parameter-
ization despite the presence of a negative viscosity. The energy budget-based backscatter parameterization
has so far been tested in a number of idealized configurations, including baroclinic channel flows (Jansen
& Held, 2014; Jansen et al., 2015; Juricke et al., 2019) and a barotropic gyre model (Klöwer et al., 2018),
where it substantially improves the solutions at resolutions where the largest eddies are at least marginally
resolved. Unfortunately, even so-called eddy-permitting global ocean and climate models today reach this
resolution only over part of the world's ocean while remaining non-eddying in other regions (e.g., Hallberg,
2013). Moreover, coarser resolution ocean models remain the workhorse for long-term climate simulations,
thus limiting the usefulness of a subgrid-scale parameterization that remains inadequate in the non-eddying
regime.

Energy budget-based mesoscale eddy parameterizations have also been proposed for the non-eddying res-
olution regime (Cessi, 2008; Eden & Greatbatch, 2008; Jansen et al., 2015; Mak et al., 2018; Marshall &
Adcroft, 2010). Rather than addressing the parameterization of momentum and associated KE and enstro-
phy fluxes, these studies focus on eddy volume fluxes (or “bolus” transport), parameterized via a variant of
the Gent and McWilliams (1990, GM) parameterization, which removes APE from the resolved flow by flat-
tening isopycnal slopes. Eden and Greatbatch (2008) introduce an explicit subgrid mesoscale EKE budget
equation where the potential energy dissipation from the resolved flow by the GM parameterization appears
as a source of subgrid EKE. The predicted EKE then informs the GM coefficient, which is formulated via a
mixing length argument. A variant of this approach has more recently been proposed by Mak et al. (2017,
2018), who formulate the GM coefficient via an energetic constraint, which provides a strict upper bound in
the QG limit. Energy budged-based GM closures have shown promise in non-eddying ocean models (Eden
& Greatbatch, 2008; Mak et al., 2017, 2018), but their success hinges on an adequate representation of the
mixing length and eddy energy dissipation (Jansen et al., 2015), both of which remain highly challenging to
predict from first principles. Moreover, these approaches fundamentally remain variations on the GM clo-
sure, merely providing a flow-dependent GM coefficient. While suitable for non-eddying models, the GM
parameterization has been argued to be too dissipative at eddy-permitting resolution, where its main effect
is to dampen potentially resolvable eddies (Hallberg, 2013).

The challenge to eddy parameterizations in the eddy-permitting regime can be understood by noting their
effect on the energy cycle. The GM parameterization dissipates APE at the grid scale and can hence be
thought of as representing the forward cascade of APE and ultimately conversion to subgrid-scale EKE. The
viscous frictional operator parameterizes a forward cascade of enstrophy but also spuriously dissipates a
significant amount of KE (e.g., Jansen & Held, 2014). A pathway for KE to return to the resolved flow instead
is generally missing in global ocean models. The KE backscatter term introduced by Jansen and Held (2014)
attempts to account for this issue but by focusing on KE and enstrophy fluxes only, the parameterization is
unsuitable if the conversion of APE to KE near the deformation scale cannot be resolved explicitly.

To allow for a complete representration of the turbulent eddy energy cycle at different scales, we here pro-
pose a generalized energy budget-based eddy parameterization, which combines the backscatter approach
of Jansen et al. (2015) with an energy budget-based version of the GM parameterization following Eden and
Greatbatch (2008) and others (e.g., Jansen et al., 2015; Marshall & Adcroft, 2010). The resulting closure can
represent forward and inverse cascades of KE (realized via viscous friction and backscatter operators), as
well as the conversion of potential to KE at the subgrid scale (via the GM parameterization). An adequate
representation of these processes is paramount to making the approach applicable over a wide range of res-
olutions and parameter regimes—a crucial step for global ocean and climate models, where flow properties
vary widely across the domain. A related approach has independently been developed by Bachman (2019)
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Figure 1. Sketch of the model's energy cycle, indicating transfers between PE, resolved KE, and unresolved
(subgrid-scale) KE. Explicitly resolved energy transfers are denoted by solid arrows, while parameterized transfers are
denoted by dashed arrows. Notice that diapycnal mixing provides an additional source of PE in the ocean (e.g., Wunsch
& Ferrari, 2004) but is not included here, as we will focus on adiabatic dynamics. Similarly, a decomposition of
potential energy into available and background PE is not attempted. Such a decomposition is generally nontrivial in
primitive equations and not necessary for the present purpose, as total and available PE tendencies are interchangeable
for adiabatic dynamics. KE = kinetic energy; GM = Gent and McWilliams; PE = potential energy.

and tested successfully in an Eady channel model. Similarities and differences between our parameterization
and the formulation of Bachman (2019) will be discussed in section 5.

The parameterization has been implemented in the latest version of the Modular Ocean Model Ver-
sion 6 (MOM6) and is tested in the idealized “Neverworld” ocean configuration, which includes an
analytically defined topography with two basins and a circumpolar channel. The specifics of the new
parameterization will be discussed in section 2. The model setup and fine-resolution reference simula-
tions will be presented in section 3, and results will be discussed in section 4. Conclusions are provided in
section 5.

2. A Scale-Aware Energy Budget-Based Eddy Parameterization
This study introduces an energy budget-based subgrid-scale eddy parameterization framework for ocean
general circulation models that is suitable over a wide range of resolutions from non-eddying to eddy resolv-
ing. The parameterization is motivated by our physical understanding of the ocean's turbulent energy cycle
and makes use of an explicit subgrid EKE equation:

𝜕te = ėGM + ė𝜈4
− ė𝜈2

− ėdiss −
1
H
∇ · (HFb) , (1)

where e is the vertically averaged subgrid KE. A GM parameterization extracts potential energy from the
resolved flow, which appears as a source of subgrid KE (ėGM). Another source of subgrid KE is given by a
biharmonic viscosity (ė𝜈4), which extracts KE and enstrophy from the resolved flow. Sinks of subgrid KE
include a subgrid-scale dissipation (ėdiss), as well as a backscatter of KE to the resolved flow (ė𝜈2), imple-
mented via a negative Laplacian viscosity. The last term in equation (1) represents horizontal transport
of subgrid KE. The major energy pathways, represented by the different components of the parameteriza-
tion, and the major (potentially) resolved pathways are sketched in Figure 1. Notice that the computational
overhead associated with the vertically averaged subgrid energy budget is small as it amounts to a single
two-dimensional tracer.

The GM parameterization is formulated to address three distinct resolution regimes. One where none of the
mesoscale eddies are resolvable, one where the largest eddies can be resolved explicitly, but the deformation
radius remains unresolved, and one where the deformation radius is resolved. In the real ocean, the scale of
the largest eddies is only modestly larger than the deformation radius (perhaps by about a factor of 2—see
e.g., Tulloch et al., 2011), such that the second regime may be hard to separate from the others. Nevertheless,
both theory and observations suggest that the scale of the largest eddies is controlled by an arrest scale
that generally differs from the deformation radius (e.g., Larichev & Held, 1995; Tulloch et al., 2011), which
encourages us to treat the two scales as independent. With that in mind, we propose a formulation for the
GM “diffusivity” as follows:

KGM = c
√

2eLmix R(Δkd) . (2)
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Here c is a nondimensional parameter, which will be used to tune the parameterization, Lmix is a
subgrid-scale mixing length, and R(Δkd) is a resolution function to account for the lack of a forward cascade
of APE below the deformation radius. Δ is the grid spacing, and kd is the deformation wavenumber, calcu-
lated by solving an eigenvalue problem for the first vertical mode (e.g., Flierl, 1978). We here focus only on
the leading vertical mode, thus ignoring transfer of energy into higher modes (see also Appendix A).

The subgrid-scale mixing length is defined to be the smaller of the grid scale and a halting scale:

Lmix = min(Δ,L𝛽∗ ), (3)

where the halting scale is assumed to be given by a generalized Rhines scale

L𝛽∗ = (2e)1∕4𝛽∗−1∕2 , (4)

with a topographically modified barotropic planetary potential vorticity gradient 𝛽∗ = |𝛽ŷ−𝑓∇H∕H|, where
𝛽 = 𝜕yf is the planetary vorticity gradient and H is the local depth of the ocean (see also Sinha & Richards,
1999; Thompson, 2010). The use of a topographic Rhines scale was found to provide better results at coarse
resolution than a traditional definition of the Rhines scale (not shown). A GM coefficient similar to the
formulation of Mak et al. (2018) could be implemented via a mixing length that is proportional to

√
eN∕M2,

where N2 = 𝜕zb and M2 = |∇hb| (cf. Jansen et al., 2015). Such a formulation may provide a useful upper
bound on the GM coefficient, although the results of Jansen et al. (2015) suggest that the Rhines scale is
likely to limit the mixing length over most of the relevant parameter regime. For simplicity, an additional
limitation of the GM coefficient following Mak et al. (2018) is therefore not included here.

The nondimensional resolution function

R(Δkd) =
[

1 + 𝜋

Δkd

]−1

(5)

further reduces the GM diffusivity once the deformation wavelength is resolved. Since we do not expect the
forward cascade of APE to continue at scales smaller than the deformation radius (e.g., Larichev & Held,
1995), the GM parameterization becomes obsolete at high enough resolutions. The scaling of R(Δkd) ∝ Δ for
Δ−1 ≫ kd can be crudely justified in the context of two-layer QG theory (see Appendix A) and appears to pro-
vide reasonably good results in practice. A resolution function to scale the GM coefficient as a function ofΔkd
has previously been introduced by Hallberg (2013), who advocates for a step function dependence, where
the GM parameterization is suddenly switched off once Δkd falls below a threshold value. The argument is
that any intermediate value for the GM coefficient primarily leads to a damping of the eddies that may oth-
erwise be resolvable while not doing enough to parameterize the missing eddy transport. We hypothesize
that this problem can be avoided with the inclusion of KE backscatter, which counteracts the damping of
resolvable eddies by the GM parameterization, thus allowing for a smooth transition between non-eddying
and eddy-resolving regimes.

The energy transfer between the resolved flow and subgrid KE associated with the GM parameterization is
formulated as

ėGM = 1
H

∑
k

KGMg′k|∇𝜎𝜂k|2, (6)

where we assume a stacked shallow water model, as used in this study, and the sum is over all isopycnal
layer interfaces, k, with height 𝜂k and reduced gravity g′k. According to the QG energy cycle, potential energy
extracted from the large-scale flow by mesoscale eddies is converted first into eddy APE, with the final
conversion to eddy KE being generally delayed (Chen et al., 2016). One could account for this pathway by
including an additional explicit subgrid APE budget. However, the formulation of the GM parameterization,
at least in z coordinate models, is arguably inconsistent with such an approach, as the eddy buoyancy flux is
generally assumed to be directed locally along isopycnals, which implies a direct and complete conversion
of all eddy APE into eddy KE (Chen et al., 2014; Lorenz, 1955). Moreover, formalizing the concept of APE
and its transfers outside the QG limit is challenging. For simplicity and consistency, we therefore ignore the
subgrid APE reservoir for the time being, although we note that the topic deserves further attention in the
future.

The biharmonic viscosity is formulated similar to the OM4 global ocean model configuration of MOM6,
which combines a biharmonic version of the Smagorinsky model (Griffies & Hallberg, 2000; Smagorinsky,
1963) with a resolution-dependent background viscosity:
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𝜈4 = (csmag|D| + 𝜏−1
vis )Δ

4, (7)

where |D| = √
(𝜕xu − 𝜕𝑦v)2 + (𝜕𝑦u + 𝜕xv)2 is the deformation rate, csmag = 0.06, and 𝜏vis = 45 days. The only

difference to the OM4 configuration is in the use of a fixed time scale rather than a fixed velocity scale in the
formulation of the background viscosity, which we believe to lead to a more realistic resolution dependence.
(In a forward enstrophy cascade —or, more generally, in the presence of a k−3 KE spectrum —we expect
the grid-scale eddy turnover time scale rather than the grid-scale eddy velocity to be scale independent). The
dissipation time scale 𝜏vis is chosen to provide about the same biharmonic background viscosity as in the
OM4 configuration at (1/2)◦ resolution.

The corresponding energy transfer between the resolved and unresolved flow can be computed as

ė𝜈4
= − 1

H ∫ 𝜏
𝜈4
i𝑗 𝜕iu𝑗dz, (8)

where 𝜏𝜈4 is the biharmonic stress tensor (Griffies & Hallberg, 2000), i, j = x, y represent the horizontal
directions and, following Einstein notation, sums over recurring indices are implied.

In an effort to minimize the number of free parameters (and for lack of a better theory), the negative vis-
cosity coefficient in the parameterization of KE backscatter is chosen to be identical to the GM coefficient,
that is, 𝜈2 = −KGM. This formulation has the desirable property that in a limit where the dominant bal-
ance is between the forward cascade of APE and the inverse cascade of KE (an informative limit in QG
theory, albeit unlikely to ever hold in the real ocean), the closure will lead to an approximate equipartition
between grid-scale APE and KE. The approximate equipartitioning follows by noting that a similar energy
flux requires that − ∫ 𝜏

𝜈2
i𝑗 𝜕iu𝑗dz =

∑
kKGMg′k|∇𝜎𝜂k|2. Assuming that both shear and isopycnal height gradi-

ents are dominated by grid-scale variability (as expected in APE and KE cascade ranges), we can further use
that ∫ 𝜏

𝜈2
i𝑗 𝜕iu𝑗dz ∼ H𝜈2Δ−2KEΔ and

∑
kKGMg′k|∇𝜎𝜂k|2 ∼ HKGMΔ−2APEΔ, where KEΔ and APEΔ are the char-

acteristic grid-scale KE and APE, respectively. If KGM = −𝜈2, we hence find KEΔ ≈ APEΔ. The approach also
has the effect that both GM and backscatter are expected to become negligible at very fine resolution, leav-
ing only the biharmonic Smagorinsky closure at work. Whether the backscatter term should become small
at fine resolution remains an open question. We tried an alternative formulation where the resolution func-
tion, R(Δkd), is not included in the backscatter term, in which case the closure effectively reduces to that of
Jansen et al. (2015) at fine resolution. The results compared less favorably to our reference simulation, with
the combined resolved and parameterized eddy fluxes apparently becoming too strong at relatively fine res-
olutions (not shown). The energy transfer associated with the backscatter (ė𝜈2) is analogous to equation (8)
but with the negative Laplacian stress tensor replacing the biharmonic tensor (see Griffies & Hallberg, 2000,
for the formulation of the stress tensors).

The subgrid-scale KE dissipation is assumed to be dominated by frictional dissipation in the bottom
boundary layer. The latter is parameterized using a quadratic drag law as

ėdiss = cd

√
(e + u2

bot + U2
bg) e, (9)

where cd = 0.03 is the drag coefficient, ubot is the resolved bottom velocity, and Ubg = 0.1 m/s is a background
velocity representing tidal currents and other unresolved (non-mesoscale) flows. The formulation in (9)
implicitly assumes that the subgrid KE is dominated by the barotropic mode, such that the KE at the bottom
is similar to the vertically averaged KE represented by e. This assumption is likely to lead to an overestimate
of the bottom velocity and hence dissipation (e.g., Jansen et al., 2015). At the same time, we are missing other
potential dissipation processes, such as associated with energy transfer to the internal wave field and other
routes to loss of balance (e.g., Ferrari & Wunsch, 2009; Wunsch & Ferrari, 2004). In practice, the formulation
in equation (9) appears to provide roughly the right level of subgrid EKE in our model, although the success
may in part be due to unrealistically strong bottom friction compensating for other missing processes. More
research is needed to better understand the routes to dissipation of mesoscale energy in the ocean (Wunsch
& Ferrari, 2004; Ferrari & Wunsch, 2009).

The last term in the subgrid KE budget equation (1) represents the horizontal transport of subgrid KE, which
is here parameterized via diffusion and advection by the resolved barotropic flow (cf. Grooms, 2017):

Fe = ubte − Ke∇e , (10)
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Figure 2. Zonal wind stress (a) and bathymetry (b) of the Neverworld configuration. No meridional wind stress is
applied. The bottom topography in the interior of the basins extends up to 400 m above the seafloor, which otherwise is
at 4-km depth. Gray shading indicates land.

where ubt is the resolved barotropic (i.e., vertical mean) velocity and Ke is a diffusivity of subgrid KE. Notice
that horizontal boundaries in our model are implemented via vanishing ocean thickness, H, and the formu-
lation of the flux term in equation (1) implies no flux boundary conditions for eddy energy. The subgrid KE
diffusivity is chosen as Ke = c

√
2eLmix. In lack of a better theory, the nondimensional parameter c is again

chosen identical to that in the GM parameterization. In addition to being advected by the large-scale flow
and stirred by the turbulent velocity field itself, we expect an eddy energy flux due to Rossby wave-like prop-
agation (e.g., Zhai et al., 2010). This process is not currently included in our model but could be added given
a suitable theory for wave-like eddy energy propagation. Grooms (2017) moreover shows that, while the
mean propagation of eddy energy may be reasonably represented by a Laplacian diffusion, instantaneous
eddy energy distributions are poorly represented by the mean, suggesting that a stochastic representation of
subgrid EKE transport may be a promising avenue for future improvements.

In addition to explicit parameterizations, numerical methods can play a significant role in the energy and
enstrophy budget at eddy-permitting resolutions. We here use a discretization of the momentum equations
based on Arakawa and Hsu (1990), which exactly conserves energy and enstrophy in the limit of horizontally
nondivergent flow. An exception is the (1/16)◦ reference simulation, which had already been performed
using the enstrophy conserving scheme of Sadourny (1975).

3. Model and Test Setup
The parameterization introduced in section 2 has been implemented in the Geophysical Fluid Dynamics
Laboratory (GFDL) MOM6 and will here be tested in the Neverworld configuration. The Neverworld con-
figuration, which has been designed specifically as a testbed for mesoscale eddy parameterizations, uses an
idealized Southern-Hemisphere-like bathymetry and zonal wind stress (see Figure 2). The domain, which
extends from 14◦S to 65◦S and over 90◦ zonally, comprises two basins connected to a circumpolar ocean
region in the south. Below about 2-km depth, the circumpolar channel is interrupted by topography mim-
icking Scotia Arc, and smaller seafloor undulations (extending up to 400m above this maximum depth) exist
throughout the domain. A flow is forced by a zonally symmetric zonal wind stress with westerlies south
of ∼33◦S and weaker easterlies to the north. The topography and forcing are analytically defined, which
allows us to readily run simulations at arbitrary resolutions. The model setup uses six isopycnal vertical lay-
ers with 𝜌 = 1025.5, 1027, 1027.5, 1027.8, 1028, and 1028.1 kg/m3 from top to bottom, respectively. All layer
interfaces are initially flat with layer thicknesses of 150, 250, 600, 1000, 1000, and 1000 m, respectively. The
adiabatic setup allows us to integrate the model to a statistically steady state, which is reached after less than
100 model years. The time step is set to 300 s for the finest resolution simulation at (1/16)◦ and is increased
inversely proportional to the grid spacing (up to a maximum of 1 hr) for the coarser resolution simulations.

A fine-resolution reference simulation has been performed on a Mercator grid with (1/16)◦ nominal resolu-
tion and will serve as a “ground truth” for the evaluation of our eddy parameterization in coarser-resolution
simulations. The reference simulation uses a biharmonic viscosity but no GM parameterization, as the con-
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Figure 3. Mean flow and eddies in the fine-resolution ((1/16)◦) reference simulation. (a) Time-mean sea surface
height, with black contours indicating positive values and white contours indicating negative values, and magnitude of
the vertically integrated transport (shading; with logarithmic color bar). Averages are taken over the last 20 years of the
100-year-long simulation. (b) As in (a) but showing a snapshot of deviations from the time mean. The sea surface
height contour interval is 0.2 m in (a) and 0.4 m in (b).

version of potential to KE near the deformation radius is expected to be adequately resolved. Figure 3 shows
the time-mean horizontal flow and a snapshot of the eddy field in the fine-resolution reference simulation.
The flow shows many of the familiar features observed in the real ocean. A circumpolar current devel-
ops, which is associated with a strong transient eddy field as well as standing meanders—most notably
a sharp recirculation downstream of “Drake Passage.” Both basins exhibit gyres, which are partially con-
nected through the Southern Ocean. Energetic transient eddies exist throughout the domain and are most
pronounced downstream of Drake Passage, as well as near the tip of the central continent, where coherent
vortices, crudely resembling Aghulas rings, are formed. The KE spectrum indicates that the most energetic
eddies have a wavelength of around 3–4◦ longitude, corresponding to around 200–400 km (see Figure 4).

The new parameterization discussed in section 2 (hereafter: MEKE GM+BS—Mesoscale Eddy Kinetic
Energy budget-based GM with BackScatter) will be tested in the Neverworld configuration and compared
to other parameterizations available in the MOM6 ocean model. Our primary point of comparison will be
the parameterization currently used in GFDL's OM4p5 ocean-ice model. The OM4p5 global ocean model
makes use of an explicit subgrid eddy energy budget similar to equation (1). However, the parameteriza-
tion employed in OM4p5 differs from the approach presented in section 2 in two main aspects: (1) It does
not include energy backscatter to the resolved flow and (2) the resolution dependence of the GM diffusivity
is implemented via a step function, following Hallberg (2013). Specifically, the GM coefficient is formu-
lated as in equation (2) but with Lmix independent of resolution and R(Δkd) implemented as a step function,

Figure 4. Surface geostrophic kinetic energy spectra for the (1/16)◦ reference simulation (thick black line) and for
(1/2)◦ resolution experiments using different formulations for the parameterization of unresolved mesoscale eddy
fluxes (see legend and text for explanation). The spectra show geostrophic kinetic energy (computed from sea surface
height) of the meridional (transverse) flow as a function of zonal wavenumber. Zonal spectra are taken in both basins
between 3.6◦ and 41.4◦ and between 48.6◦ and 86.4◦ longitude, with tapering applied via a Hann window. Spectra are
averaged between both regions, meridionally between −62◦ and −18◦ latitude, and temporally over the last 20 years of
the simulations, and normalized such that a sum over all wavenumbers yields the total energy.
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Figure 5. As Figure 3 but for (1/2)◦ resolution simulations using the parameterization employed in Geophysical Fluid
Dynamics Laboratory's OM4p5 (a and b) versus the new MEKE GM+BS parameterization (c and d).

which turns off the GM parameterization whenever the grid scale is finer than the deformation radius. The
OM4p5 parameterization also includes a vertical structure for the GM coefficient (although the subgrid KE
budget remains two-dimensional), as well as a Laplacian viscosity. Moreover, the viscous energy dissipation
does not affect the subgrid KE. Further details are provided in Appendix B. In addition to the parameteri-
zation used in OM4p5, we will consider three different formulations of the GM parameterization, as well
as a series of simulations that use only a biharmonic viscosity. The GM formulations include (1) an energy
budget-based GM parameterization identical to the configuration discussed in section 2 but without KE
backscatter or a subgrid KE source from viscous stress, that is, ė𝜈4

= ė𝜈2
= 0 (hereafter: MEKE GM), (2) a

constant GM coefficient, and (3) a resolution-dependent variation on the Visbeck et al. (1997) parameter-
ization, with KGM = 𝛼[sN]Δ2, where s is the isopycnal slope, N =

√
𝜕zb is the buoyancy frequency, 𝛼 is a

nondimensional parameter, and the square brackets denote a vertical average. All configurations use the
same formulation for the biharmonic viscosity, following equation (7).

In all cases, the parameterizations have been tuned at (1/2)◦ resolution to match the mean state APE of the
fine-resolution reference solution. The mean state APE is computed as

APE = 1
2
∑
i,𝑗,k

Ai,𝑗g′k(�̄�
2
i,𝑗,k − �̃�2

i,𝑗,k), (11)

where Ai,j is the area of the grid box at horizontal index (i, j), g′k is the reduced gravity of the kth
interface, �̄�i,𝑗,k is the time-averaged interface height, and �̃�i,𝑗,k is the interface height of the reference
state (defined as the minimum potential energy state that can be obtained via an adiabatic rearrange-
ment of water masses). Since our model setup is adiabatic, the reference state �̃� is constant in time and
fully determined by the initial conditions. As a result, total PE and APE differ only by a constant off-
set and can be used interchangeably. Since mesoscale eddies (as well as parameterizations representing
their effects) extract APE from the mean flow, the mean state APE provides a useful metric for the aver-
age magnitude of (parameterized and/or resolved) mesoscale eddy effects. Notice that APE is computed
on the respective native model grid for both fine- and coarse-resolution simulations. Coarse graining
of the fine-resolution simulation results by box averaging over the coarse grid box size has no signifi-
cant effect, since APE is dominated by the large scales (cf. Figure A1). In all configurations (except the
series of simulations without any GM parameterization) one tunable parameter has been adjusted to
match the mean state APE. For the energy budget-based parameterizations, which include the new MEKE
GM+BS parameterization, the MEKE GM configuration (without backscatter), and the OM4p5 parameter-
ization, the tunable parameter is the nondimensional constant “c” in the definition of the GM diffusivity
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Figure 6. Spectra of temporal sea surface height variance (averaged over
the model domain) for the fine-resolution reference simulation (thick black
line) and (1/2)◦ resolution simulations with different subgrid-scale eddy
parameterizations (see legend and text for explanation). Notice that the
resolution-dependent Visbeck et al. (1997) parameterization (green) leads
to a virtually steady solution, such that the variability spectrum is mostly
below the axis limit. All spectra have been smoothed with a three point
running mean.

(equation (2)). The parameter was determined to be c = 0.15 for MEKE
GM+BS, c = 0.6 for MEKE GM, and c = 0.115 for the OM4p5 parameter-
ization. For the constant GM coefficient, the tunable parameter is the dif-
fusivity itself, whose ideal value was found to be KGM = 800 m2/s, and for
the resolution-dependent formulation of the Visbeck et al. (1997) parame-
terization the tunable parameter is 𝛼, which was set to 𝛼=1.1. (Notice that
this value is much larger than the value of 𝛼 = 0.015 suggested by Visbeck
et al., 1997. The difference is that the original formulation of Visbeck et
al., 1997, uses a length scale characteristic of the width of the baroclinic
zone [following Green, 1970], while the length scale is here replaced
with the [much smaller] gride scale—motivated by the notion that only
those eddies that cannot be resolved explicitly need to be parameterized.)
Parameters have only been tuned once for the (1/2)◦ resolution simula-
tions. Any resolution dependence is determined by the parameterization
itself. Notice that all formulations, except for the constant GM param-
eterization, are resolution dependent, although the explicit resolution
dependence is locally binary in the OM4p5 formulation—that is, the GM
parameterization is either fully on or off (following the recommendation
of Hallberg, 2013).

4. Results
Coarse-resolution simulations with parameterized subgrid-scale eddies
have been performed at 1◦, (2/3)◦, (1/2)◦, (1/3)◦, (1/4)◦, and (1/6)◦ reso-

lution. We will start with a discussion of the model results at (1/2)◦ resolution, before turning our attention
toward resolution dependence.

4.1. (1/2)◦ Resolution Simulations
At a grid scale of (1/2)◦, adequate resolution of the full mesoscale eddy field is not possible, but the largest
transient eddies and most of the standing meanders are resolvable (see also Figures 3 and 4). In practice,
the use of the GM parameterization, however, typically leads to a smooth solution with almost no tran-
sient eddy activity, as shown for the OM4p5 parameterization configuration in Figures 5a and 5b. Some

Figure 7. Mean state APE as a function of resolution, using different
parameterization schemes (see legend). The thick black horizontal line
shows the mean state Available potential energy (APE) of the
fine-resolution reference simulation. Notice that the mean state APE at
(1/2)◦ resolution was used to tune the GM parameterizations.

transient variability exists in the northern gyre, but the Antarctic Cir-
cumpolar Current (ACC) is essentially steady. The time-mean flow is
also much smoother than in the fine-resolution reference simulation (cf.
Figure 5a to Figure 3a). The new MEKE GM+BS parameterization with
KE backscatter, by comparison, leads to a significantly more energetic
flow, with a much sharper recirculation in the lee of Drake Passage and
transient eddy activity throughout most of the domain (Figures 5c and
5d). Figure 4 confirms quantitatively that the KE at all scales is signifi-
cantly larger with the MEKE GM+BS parameterization as compared to
any of the other (1/2)◦ resolution simulations with GM parameteriza-
tion. However, for all but the largest scales, the KE remains significantly
smaller than in the fine-resolution reference simulation and slightly
smaller than in a (1/2)◦ resolution simulation with no GM parameter-
ization and only hyperviscosity. Higher KE could be obtained by using
a stronger backscatter and/or smaller GM coefficient, although prelim-
inary experiments have shown that this tends to lead to a less accurate
reproduction of the mean state of the fine-resolution simulation (not
shown). Similarly, using only hyperviscosity leads to a poor representa-
tion of the mean state, as will be discussed below.

The increased eddy energy in the simulation with energetically consistent
backscatter also leads to improved internal variability. Figure 6 shows the
sea surface height frequency spectrum of both the fine-resolution refer-
ence simulation and the (1/2)◦ resolution simulations. While all (1/2)◦

resolution simulations have significantly reduced variability on short
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Figure 8. ACC transport as a function of resolution, using different
parameterization schemes (see legend). The thick black horizontal line
shows the ACC transport in the fine-resolution reference simulation.

time scales as compared to the fine-resolution reference simulation,
the new MEKE GM+BS parameterization leads to significantly stronger
variability than found with any of the other GM parameterizations and
matches the variability of the fine-resolution simulation on interannual
time scales. Notice that coarse-graining the fine-resolution reference sim-
ulation to a (1/2)◦ grid by box averaging does not significantly affect
the frequency spectrum (not shown), suggesting that the mismatch
between coarse- and fine-resolution simulations is indeed indicative of a
model bias.

4.2. Resolution Dependence
To analyze the skill of the parameterization across varying resolution,
we first focus on the APE of the mean flow, as defined in equation (11),
which provides a useful measure of the overall effectiveness of resolved
and parameterized mesoscale eddies. Figure 7 shows the mean state APE
as a function of resolution from 1◦ to (1/6)◦. The mean state APE at (1/2)◦

resolution was used to tune the parameterizations and thus by construc-
tion matches the APE of the fine-resolution reference simulation in all
configurations that use a GM parameterization. No tuning was performed
for the simulation that uses only hyperviscosity, where the mean state
APE is much too large. Insufficient APE dissipation is expected in this
simulation as no GM parameterization is employed and the resolution

remains insufficient to adequately resolve mesoscale eddies explicitly. The simulations using the new MEKE
GM+BS parameterization show somewhat too high mean state APE at resolutions coarser than (1/2)◦ and
somewhat too low APE at resolutions finer than (1/2)◦. However, the APE remains within about 10% of
the fine-resolution reference simulation throughout the full range of resolutions. Similarly small errors are
found using the OM4p5 parameterization configuration, as well as with a constant GM coefficient. The
MEKE GM parameterization without backscatter and the resolution-dependent Visbeck et al. (1997) param-
eterization instead lead to substantially too little APE at resolutions coarser than (1/2)◦ and too much APE
at resolutions finer than (1/2)◦, indicating that the resolution dependence is inadequate. The relatively poor
performance of the MEKE GM and resolution-dependent Visbeck et al. (1997) parameterizations, compared
to a constant GM coefficient, is qualitatively consistent with the results of Hallberg (2013), who argued
that the GM parameterization should either be fully on or fully off, as a reduced GM coefficient at inter-
mediate resolutions generates too little transport while damping the otherwise resolvable eddies. However,
our results also suggest that this problem can be overcome by including a backscatter term, which returns
KE to the resolved flow, thereby counteracting the damping of the resolvable eddies by the GM parame-
terization. Indeed, the largely opposite resolution dependence of the mean state APE in the MEKE GM
versus MEKE GM+BS parameterization indicates that the backscatter may somewhat overcompensate in
our implementation.

While the mean state APE provides a useful measure of the bulk eddy effect, a correct APE does not guaran-
tee an accurate representation of the mean flow. To quantify the skill of the parameterizations in representing
the mean flow across resolutions, we consider two additional metrics: the ACC transport and the global
mean isopycnal interface height error. The ACC transport is computed as the total zonal volume transport:

TACC = ∫ ∫ ūdxdz , (12)

where ū is the time-mean zonal flow and the integral extends vertically and meridionally across the full
domain. Notice that due to continuity, TACC is independent of the longitude where it is evaluated. The mean
isopycnal interface height error is computed as

𝜖 =
∑
i,𝑗,k

Ai,𝑗g′k
[
�̄�i,𝑗,k − �̄�ref

k (xi,𝑗)
]2 ∕

∑
i,𝑗

Ai,𝑗 , (13)

where �̄�ref
k (xi,𝑗) is the time-mean interface height of the fine-resolution reference simulation, evaluated at

the location of the respective coarse-resolution grid point. Notice that 𝜖 has the dimensions of APE per unit
area, but unlike a vanishing error in the mean state APE, 𝜖 = 0 would imply a perfect representation of the
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Figure 9. Mean isopycnal interface height error, as defined in equation
(13), as a function of resolution, using different parameterization schemes
(see legend).

time-mean isopycnal and free surface height fields (and hence also the
geostrophic velocity field). A vanishing isopycnal height error would thus
also imply that the APE exactly matches the high-resolution reference
simulation, but not vice versa.

The results for the ACC transport largely resemble those for the mean
state APE (cf. Figure 8 to Figure 7). A close relationship between APE
and ACC transport is to be expected as the ACC transport is mostly baro-
clinic and the associated isopycnal slopes are a major contributor to the
APE of our Southern Hemisphere domain. The most notable difference
between the results for APE and ACC transport is that the constant GM
parameterization leads to a slight but systematic underestimate of the
ACC transport, while the OM4p5 configuration leads to a systematic over-
estimate of the ACC transport. These errors are likely attributable to
shortcomings in the spatial patterns of the diffusivity in the two param-
eterizations. The MEKE GM+BS parameterization instead leads to the
overall best agreement with the fine-resolution reference simulation,
with an error of less than 10% across the full range of resolutions.

The MEKE GM+BS parameterization also leads to the smallest isopyc-
nal interface height errors, as well as a mean state that systematically
improves with increasing resolution (see Figure 9). The constant GM and

(to a lesser extent) OM4p5 parameterizations perform reasonably well at coarse resolution, but the results
do not improve systematically as the resolution is increased. The lack of improvement with increasing res-
olution when using a constant GM coefficient can be understood by noting that the GM parameterization
suppresses smaller-scale variability and maintains smooth solutions, thus limiting the effective resolution
of the model. The results obtained with the OM4p5 configuration can be understood similarly, as the GM
coefficient here remains effectively resolution independent over most of the domain for resolutions up to
(1/4)◦. Only at (1/6)◦ resolution does the deformation radius become resolved over a large part of the domain
where the GM parameterization gets turned off. At resolutions finer than (1/4)◦, relatively good results can
also be obtained without a GM parameterization, but this approach leads to a poor representation of the
mean state at coarser resolution.

To better understand the representation of eddies at varying resolution, Figure 10 shows the resolved and
subgrid KE as a function of model resolution. The subgrid KE is predicted by the parameterization and is

Figure 10. Resolved (dashed), subgrid (dotted), and total (solid) kinetic
energy (KE) as a function of resolution, using different parameterization
schemes (see legend). Notice that subgrid KE is only defined for the energy
budget-based parameterizations.

defined only for the energy budget-based parameterizations. In the simu-
lations using the MEKE GM+BS parameterization, the total KE, defined
as the sum of the resolved and subgrid KE, roughly matches the total
KE of the fine-resolution simulation (to within <15%) across the full
range of resolutions. At coarse resolution that KE is almost entirely unre-
solved, but as the resolution is enhanced, an increasing fraction of the
KE is represented by the resolved flow, with the resolved KE starting to
dominate at (1/6)◦ resolution. A qualitatively similar result is obtained
with the MEKE GM and OM4p5 energy budget-based parameterizations,
but the fraction of KE that is resolved explicitly remains much smaller
throughout the considered range of resolutions. At resolutions of (1/3)◦

or finer, the resolved KE of the simulations with the new MEKE GM+BS
parameterization is roughly similar to that in the simulations with only
hyperviscosity. All other GM-based approaches instead lead to much less
energetic flows.

The increasingly resolved KE in the MEKE GM+BS parameterization
goes together with changes in the energy budget of the resolved flow
(Figure 11). At coarse resolution, the energy input by the winds is dom-
inantly balanced by APE removal by the GM parameterization, which
is ultimately dissipated at the subgrid scale (cf. Figure 1). Bottom fric-
tion acting on the resolved flow (the dominant energy sink in the
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Figure 11. Energy budget of the resolved flow, as a function of resolution, for the simulations with the new MEKE
GM+BS parameterization (left) and the parameterization used in OM4p5 (right). Shown are the kinetic energy (KE)
input by the wind stress (blue), KE dissipation by bottom friction (red), the net KE dissipation by viscous terms
(including both biharmonic viscosity and negative Laplacian backscatter; yellow), potential energy dissipation by the
GM parameterization (purple), as well as the residual (black). The dotted horizontal lines indicate the corresponding
values in the fine-resolution reference simulation. The significant residual in the energy budget of the fine-resolution
reference simulation indicates a spurious numerical energy source, which appears to arise primarily from the
discretization of the momentum equation (see section 3). Notice that the model diagnostics provide only the net energy
tendency associated with vertical momentum transfer. The energy input by wind stress and dissipation by bottom
friction are estimated by integrating this energy tendency over outcropping and incropping layers, respectively.

fine-resolution reference simulation) plays a negligible role. As the resolution increases, the role of the GM
parameterization is reduced, while resolved bottom friction becomes increasingly important. The net vis-
cous KE dissipation, which includes both the dissipation by the biharmonic viscosity and the backscatter,
is relatively small at all resolutions, implying a weak net KE cascade. The energy fluxes at coarse resolu-
tion are similar to those obtained with the traditional GM parameterizations (without backscatter) such
as in the OM4p5 configuration. Unlike with the MEKE GM+BS parameterization, the energy budget with
the OM4p5 parameterization, however, remains essentially unchanged until the resolution is increased to
(1/6)◦, at which point the GM parameterization starts to be turned off. Due to the lack of energy backscatter,
viscous energy dissipation is also larger with the OM4p5 configuration, particularly at higher resolutions.
This is despite the fact that the simulations using the OM4p5 parameterization configuration have a substan-
tially weaker and smoother resolved flow. Notice that viscous dissipation is also a nonnegligible term in the
(1/16)◦ resolution reference simulation. We do not know whether this dissipation is physical or primarily
the result of still insufficient resolution.

5. Summary and Discussion
A new parameterization for subgrid mesoscale eddies is introduced, which aims to allow for a seamless con-
nection between non-eddying and eddy-resolving resolution regimes. The formulation is motivated by the
theory of geostrophic turbulence, which suggests that mesoscale subgrid eddy closures should account for
the possibility of KE backscatter to the resolved flow. This pathway is likely to be of particular importance at
eddy-permitting resolutions, where traditional viscous closures extract large amounts of KE, while the KE
cascade is in reality likely to be weak and potentially inverse (i.e., directed toward larger scales; e.g., Charney,
1971; Larichev & Held, 1995; Rhines, 1979; Salmon, 1980). The new parameterization uses an explicit sub-
grid energy budget and allows for APE and KE transfer to the subgrid scales via GM and hyperviscosity, as
well as KE backscatter to the resolved flow via a negative viscosity.

The parameterization has been implemented in GFDL's MOM6 ocean model and tested in the Neverworld
configuration, which represents an idealized model of the Southern Hemisphere. Simulation results at
coarse resolution are evaluated by comparison against a high-resolution reference simulation, considering
a number of objective measures of both eddy and mean flow properties.

The new parameterization leads to significant improvements compared to various formulations of the GM
parameterization, particularly at resolutions of around (1/2)◦ and finer. The backscatter term allows for a
more energetic resolved flow with more realistic internal variability, as compared to simulations using a
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GM parameterization without energy backscatter. Resolved KE levels and variability are of roughly simi-
lar magnitude as found in simulations that do not employ any GM parameterization. Simulations without
GM, however, poorly represent the mean flow at resolution coarser than (1/4)◦. The new parameteriza-
tion, in contrast, allows for a relatively faithful representation of the mean flow throughout the full range of
considered resolutions.

Perhaps most importantly, the proposed formulation allows for a smooth connection between non-eddying
and eddy-resolving resolution regimes. Previous work has argued that mesoscale eddy effects should be
either fully or not at all parameterized using the GM parameterization, as any gradual reduction of the GM
coefficient with increasing resolution will lead to a damping of the otherwise resolvable eddies, while con-
tributing too little to the extraction of APE from the large-scale mean flow (Hallberg, 2013). The results of
Hallberg (2013) are consistent with our argument that existing GM and eddy viscosity parameterizations
are too dissipative at eddy-permitting resolutions, as they are missing KE backscatter to the resolved flow.
Including a KE backscatter term allows us to parameterize the effects of the unresolved motions while keep-
ing the resolved flow energized. A parameterization that applies across a wide range of resolutions, from
non-eddying to eddy resolving, is crucial for global ocean and climate models, which may be eddy resolving
or permitting in some regions but remain non-eddying in others (Hallberg, 2013). The resolution awareness
also facilitates application in models that use nesting or variable meshes to locally refine the resolution (e.g.,
Biastoch et al., 2018; Ringler et al., 2013; Sein et al., 2016).

Our results also point to a number of issues that deserve further attention. One important topic is the for-
mulation of subgrid KE dissipation, which ties in with the broader question of how mesoscale eddy energy
is dissipated in the ocean (e.g., Wunsch & Ferrari, 2004). The present implementation assumes that sub-
grid KE dissipation is dominated by bottom friction and that the subgrid KE at the bottom is similar to the
vertical average. However, an analysis of the fine-resolution reference simulation suggests that KE dissipa-
tion by viscosity is significant even at (1/16)◦ resolution and that at least the total bottom KE is weaker than
the vertical average (not shown). The pathways to dissipation in the real ocean may differ again, suggesting
that the topic may need to be revisited in the context of a more realistic model. A somewhat related ques-
tion remains with regard to the formulation of the backscatter parameterization at fine resolution. In the
current implementation, the negative viscosity is formulated identically to the GM parameterization, which
implies a relatively rapid falloff once the resolution exceeds the deformation radius. Whether a rapid reduc-
tion of backscatter at fine resolution is desirable likely depends on whether grid-scale motions are expected
to remain balanced. A Rossby-number based modification of the backscatter parameterization was intro-
duced by Klöwer et al. (2018) and may better be able to address the conditions under which backscatter
should be suppressed.

A number of studies have highlighted the importance of along-isopycnal tracer fluxes in governing ocean
ventilation (e.g., Burke et al., 2015; Gnanadesikan et al., 2015; Robbins et al., 2000)—a subject that has not
been addressed by this study, which instead focuses on the parameterization of buoyancy and momentum
fluxes. While a quantitative assessment of parameterized subgrid-scale eddy tracer fluxes will need to be left
for future work, theoretical considerations suggest that the closure could be applied to eddy tracer fluxes
with an along-isopycnal diffusivity similar to KGM, albeit without the additional tapering of the diffusivity
for Δkd ≲ 1. The tapering via R(Δkd) aims to account for the lack of an APE cascade below the deformation
radius and hence does not apply to passive tracers, whose variance undergoes a forward cascade to the
microscale.

Bachman (2019) independently developed a related approach to couple the GM parameterization with KE
backscatter. As in the parameterization proposed here, the motivation is that the APE dissipation implied
by the GM parameterization causes spurious energy dissipation unless we account for the return of KE
to the resolved flow. Unlike the approach discussed here, the formulation of Bachman (2019) does not
include an explicit subgrid KE budget but instead computes the magnitude of energy backscatter such
as to instantaneously balance the energy dissipation by the GM parameterization. The GM parameter-
ization and viscous dissipation are formulated using the QG Leith parameterization of Bachman et al.
(2017), which includes a Laplacian rather than biharmonic viscosity, and the backscatter is formulated as a
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Figure A1. Zonal spectrum of available potential energy (APE), computed
as ⟨∑ng′n|�̂�n|2⟩ where �̂�n(k, 𝑦) is the zonal Fourier transform of the nth
interface height, g′n is the corresponding reduced gravity, and the sum
extends over all layer interfaces. The overbar represents time-averaging
over the last 10 years of the simulation, and the angle brackets represent
meridional averages over the two basin regions (defined as for the kinetic
energy spectra in Figure 4). The dashed line indicates a slope of k−4.5.

negative viscosity acting only on the barotropic flow component. A sys-
tematic analysis of the effects of these various differences is beyond the
scope of this study but may provide a promising route toward a closure
that combines successful aspects of both approaches.

The KE backscatter parameterizations developed here and by Bachman
(2019) follow up on a number of related approaches investigated in recent
years (Berloff, 2016; Grooms et al., 2015; Jansen & Held, 2014; Jansen et
al., 2015; Mana & Zanna, 2014; Zanna et al., 2017), all of which high-
light the importance to energize the resolved flow at eddy-permitting
resolutions. Together, the promising results obtained by these studies
raise hope that energetically consistent parameterizations that account
for KE backscatter to the resolved flow can lead to significant improve-
ments in global ocean simulations and allow us to effectively leverage the
increasing resolution of climate models.

Appendix A: Scaling Argument for the GM Coefficient
for 𝚫−1

≫ kd

Most of the mesoscale energy in the ocean is in the barotropic and first
baroclinic modes (Wunsch, 1997), which suggests that two-layer QG the-
ory provides a reasonable starting point to understand the dominant

dynamics and energetics. We will here focus on the theoretical framework described by Larichev and Held
(1995) and Held and Larichev (1996), which in turn builds on earlier work described by Rhines (1979) and
Salmon (1980). According to that theory, APE (or more generally baroclinic mode energy, which for k < kd
is dominantly in the form of APE) cascades toward smaller scales for k < kd, until the deformation radius
is reached, where the APE is transferred into barotropic KE, which then cascades inversely toward larger
scales. At k ≫ kd we instead expect only a cascade of enstrophy, with a k−3 KE spectrum. Moreover, the two
layers become independent for k ≫ kd, leading to an equipartitioning of energy between the baroclinic and
barotropic modes (as in fact predicted across all scales), and a ratio of EKE to APE proportional to k2∕k2

d.

Noting that, for isotropic flow, ̂|v|2 ∝ KE(k), where v̂ is the meridonal velocity spectrum and ̂|𝜂|2 ∝ APE(k),
where �̂� is the layer interface height spectrum, we may expect the eddy volume flux spectrum, v̂�̂�∗, where
( )* denotes the complex conjugate, to be proportional to the square root of the product of the APE and KE
spectra (see also Marshall et al., 2012). With KE(k) ∝ k−3 and APE(k) ∝ k−5, this leads us to a flux spectrum
proportional to k−4. The total eddy volume flux accomplished by eddies smaller than some hypothetical
Nyquist frequency kN ∝ Δ−1 is hence expected to be proportional to k−3

N ∝ Δ3. We want to parameterize
this volume flux using a GM closure where (v𝜂)SGS = −KGM∇�̃�, where (v𝜂)SGS represents the unresolved
(subgrid-scale) flux and �̃� the resolved interface height. Due to the steep APE spectrum for k > kd, ∇�̃� is
expected to be approximately independent of resolution (once the deformation scale is resolved), and hence,
we need KGM ∝ Δ3. Using the formulation of the GM coefficient in equation (2) and noting that the subgrid
EKE itself is expected to be proportional toΔ2 in the enstrophy inertial range, this requires R(Δ∕kd) ∝ (Δ∕kd)
for Δ−1 ≫ kd.

The argument above is based on a two-layer model, which may not be adequate in the presence of higher
vertical modes. If higher modes become increasingly important at smaller scales and lead to an equipartition
of energy between APE and KE, we may expect a flatter APE spectrum, proportional to k−3, which would
lead us to estimate a GM coefficient proportional to Δ2, thus rendering the resolution function unnecessary.
An estimate of the geostrophic APE spectrum in the high-resolution Neverworld simulations confirms a
relatively steep slope of around k−4.5 (Figure A1), not too different from the prediction of two-layer QG
theory, which supports the use of the resolution function.

Appendix B: The OM4p5 Eddy Parameterization
The OM4p5 configuration uses an explicit subgrid energy budget, similar to equation (1), although without
the viscous energy transfer terms, that is, ė𝜈4

= ė𝜈2
= 0. The GM parameterization is formulated as in

equation (2), although the eddy energy e is replaced by an estimate of its barotropic component, et, which in
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turn is computed following Jansen et al. (2015). Moreover, different formulations are used for the definition
of the mixing length and resolution function. The mixing length is defined as

Lmix =
(

L𝛽
−1 + LLH

−1)−1
, (B1)

where L𝛽 = (2et)1∕4𝛽−1∕2 is the Rhines scale (unaffected by topography) and LLH = 2et∕[sN] a maximum
mixing length implied by assuming a decorelation timescale 𝜏LH ∼ [sN]−1 (see Jansen et al., 2015; Larichev
& Held, 1995). The resolution function is defined (following Hallberg, 2013) as

R(Δkd) = (Δkd − 1) , (B2)

where  is the Heaviside step function. The vertical structure of the GM diffusivity is further modulated by
multiplication with the vertical structure of the first equivalent barotropic mode, computed from the local
stratification by solving for the first eigenmode with a no-slip bottom boundary condition (Hallberg, 1997).

Subgrid dissipation is computed as in equation (9) but with e replaced by an estimate of the energy near
the bottom, eb, computed following Jansen et al. (2015). We found that using the estimated barotropic and
bottom eddy energies for the formulation of the GM coefficient and frictional dissipation, following Jansen
et al. (2015), makes little difference and leads to no significant improvement once the overall magnitude
of the GM parameter is retuned accordingly, which is why this formulation has not been adopted for the
parameterization presented in section 2.

Unlike any of the other approaches discussed in this paper, the OM4p5 configuration also uses a positive
(i.e., dissipative) Laplacian viscosity. The viscosity coefficient is computed as the sum of four parts: (1) a
MEKE-based viscosity formulated similarly to the GM coefficient (albeit with a viscosity that is twice as
large as the GM coefficient), (2) a Smagorinsky viscosity with Csmag,𝜈2

= 0.15, (3) a grid-scale-dependent
background viscosity, 𝜈Δ = 0.01 m/sΔ, and (4) an additional latitudinally dependent background viscosity
with a maximum value of 2000 m2/s at the poles and decreasing equatorward as sin4(𝜙). The Laplacian
viscosity is subject to the same resolution step function scaling as the GM coefficient; that is, the viscosity is
turned off once the grid scale is finer than the deformation radius.
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